Preprint

Tree Builder Random Walk: recurrence, transience and ballisticity – 2019

with G. Iacobelli (UFRJ),  G. Valle (UFRJ) and L. Zuaznabar (UFSCar) – preprint

Abstract

The Tree Builder Random Walk is a special random walk that evolves on trees whose size increases with time, randomly and depending upon the walker. After every s steps of the walker, a random number of vertices are added to the tree and attached to the current position of the walker. These processes share similarities with other important classes of markovian and non-markovian random walks presenting a large variety of behaviors according to parameters specifications. We show that for a large and most significant class of tree builder random walks, the process is either null recurrent or transient. If s is odd, the walker is ballistic and thus transient. If s is even, the walker’s behavior can be explained from local properties of the growing tree and it can be either null recurrent or it gets trapped on some limited part of the growing tree.

Find the PDF file at

arXiv

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: