Journal of Theoretical Probability

Preferential Attachment Random Graphs with Edge-Steps Functions – 2017

with C. Alves (University of Leipzig) and R. Sanchis (UFMG) – Journal of Theoretical Probability


We propose a random graph model with preferential attachment rule and edge-step functions that govern the growth rate of the vertex set. We study the effect of these functions on the empirical degree distribution of these random graphs. More specifically, we prove that when the edge-step function f is a monotone regularly varying function at infinity, the sequence of graphs associated to it obeys a power-law degree distribution whose exponent is related to the index of regular variation of f at infinity whenever said index is greater than −1. When the regularly variation index is less than or equal to −1, we show that the proportion of vertices with degree smaller than any given constant goes to 0 a. s..


You may access the PDF file at

Journal of Theoretical Probability


Leave a Reply

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: